Publication
Title
High content analysis of human fibroblast cell cultures after exposure to space radiation
Author
Abstract
Space travel imposes risks to human health, in large part by the increased radiation levels compared to those on Earth. To understand the effects of space radiation on humans, it is important to determine the underlying cellular mechanisms. While general dosimetry describes average radiation levels accurately, it says little about the actual physiological impact and does not provide biological information about individual cellular events. In addition, there is no information about the nature and magnitude of a systemic response through extra- and intercellular communication. To assess the stress response in human fibroblasts that were sent into space with the Foton-M3 mission, we have developed a pluralistic setup to measure DNA damage and inflammation response by combining global and local dosimetry, image cytometry and multiplex array technology, thereby maximizing the scientific output. We were able to demonstrate a significant increase in DNA double-strand breaks, determined by a twofold increase of the gamma-H2AX signal at the level of the single cell and a threefold up-regulation of the soluble signal proteins CCL5, IL-6, IL-8, beta-2 microglobulin and EN-RAGE, which are key players in the process of inflammation, in the growth medium. (C) 2009 by Radiation Research Society
Language
English
Source (journal)
Radiation research. - New York, N.Y.
Publication
New York, N.Y. : 2009
ISSN
0033-7587
DOI
10.1667/RR1682.1
Volume/pages
172 :4 (2009) , p. 423-436
ISI
000270568900003
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 11.12.2013
Last edited 05.02.2023
To cite this reference