Publication
Title
Doping effect on the adsorption of molecule onto graphene quantum dot : from the physisorption to the chemisorption
Author
Abstract
The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B-doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots. (C) 2013 AIP Publishing LLC.
Language
English
Source (journal)
Journal of applied physics / American Institute of Physics. - New York, N.Y., 1937, currens
Publication
New York, N.Y. : American Institute of Physics , 2013
ISSN
0021-8979 [print]
1089-7550 [online]
DOI
10.1063/1.4822165
Volume/pages
114 :12 (2013) , p. 1-7
Article Reference
124307
ISI
000325391100057
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 16.12.2013
Last edited 02.10.2024
To cite this reference