Publication
Title
Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties
Author
Abstract
A combination of new thermoresponsive statistical polyoxazolines, poly[(2-butyl-2-oxazoline)-stat-(2-isopropyl-2-oxazoline)] [pBuOx-co-piPrOx], with different hydrophobic moieties and F127 surfactant as a template system for the creation of thermosensitive nanoparticles for radionuclide delivery has recently been tested [Pánek, Filippov, Hrubý, Rabyk, Bogomolova, Kučka & Stěpánek (2012). Macromol. Rapid Commun.33, 16831689]. It was shown that the presence of the thermosensitive F127 triblock copolymer in solution reduces nanoparticle size and polydispersity. This article focuses on a determination of the internal structure and solution properties of the nanoparticles in the temperature range from 288 to 312 K. Here, it is demonstrated that below the cloud point temperature (CPT) the polyoxazolines and F127 form complexes that co-exist in solution with single F127 molecules and large aggregates. When the temperature is raised above the CPT, nanoparticles composed of polyoxazolines and F127 are predominant in solution. These nanoparticles could be described by a spherical shell model. It was found that the molar weight and hydrophobicity of the polymer do not influence the size of the outer radius and only slightly change the inner radius of the nanoparticles. At the same time, molar weight and hydrophobicity did affect the process of nanoparticle formation. In conclusion, poly(2-oxazoline) molecules are fully incorporated inside of F127 micelles, and this result is very promising for the successful application of such systems in radionuclide delivery.
Language
English
Source (journal)
Journal of applied crystallography / International Union of Crystallography. - Copenhagen
Publication
Copenhagen : 2013
ISSN
0021-8898
Volume/pages
46:6(2013), p. 1690-1698
ISI
000327070000020
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
[E?say:metaLocaldata.cgzprojectinf]
ESMI - European Soft Matter Infrastructure.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 20.12.2013
Last edited 10.09.2017
To cite this reference