Title
Ultrasonication induces oxygenated species and defects onto exfoliated grapheneUltrasonication induces oxygenated species and defects onto exfoliated graphene
Author
Faculty/Department
Faculty of Sciences. Physics
Research group
Electron microscopy for materials research (EMAT)
Publication type
article
Publication
Washington, D.C.,
Subject
Physics
Chemistry
Engineering sciences. Technology
Source (journal)
The journal of physical chemistry : C : nanomaterials and interfaces. - Washington, D.C., 2007, currens
Volume/pages
117(2013):44, p. 23272-23278
ISSN
1932-7447
1932-7455
ISI
000326845400090
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The effect of ultrasonication parameters, such as time and power applied, to exfoliate graphite in o-dichlorobenzene (o-DCB) and N-methyl-1,2-pyrrolidone (NMP) was examined. It was found that the concentration of graphene was higher in o-DCB, while its dispersibility was increased when sonication was applied for a longer period and/or at higher power. However, spectroscopic examination by X-ray photoelectron spectroscopy (XPS) revealed that ultrasonication causes defects and induces oxygen functional groups in the form of carboxylic acids and ethers/epoxides onto the graphene lattice. Additional proof for the latter arose from Raman, IR, and thermogravimetry studies. The carboxylic acids and ethers/epoxides onto exfoliated graphene were derived from air during ultrasonication and found independent of the solvent used for the exfoliation and the power and/or time ultrasonication applied. Quantitative evaluation of the amount of oxygenated species present on exfoliated graphene as performed by high-resolution XPS revealed that the relative oxygen percentage was higher when exfoliation was performed in NMP. Finally, the sonication time and/or power affected the oxygen content on exfoliated graphene, since extended ultrasonication resulted in a decrease in the oxygen content on exfoliated graphene, with a simultaneous increase of defected sp(3) carbon atoms.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000326845400090&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000326845400090&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000326845400090&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle