Title
Simultaneous leaf- and ecosystem-level fluxes of volatile organic compounds from a poplar-based SRC plantation Simultaneous leaf- and ecosystem-level fluxes of volatile organic compounds from a poplar-based SRC plantation
Author
Faculty/Department
Faculty of Sciences. Biology
Publication type
article
Publication
Amsterdam ,
Subject
Physics
Chemistry
Biology
Source (journal)
Agricultural and forest meteorology. - Amsterdam
Volume/pages
187(2014) , p. 22-35
ISSN
0168-1923
ISI
000331489100003
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Emission of carbon from ecosystems in the form of volatile organic compounds (VOC) represents a minor component flux in the global carbon cycle that has a large impact on ground-level ozone, particle and aerosol formation and thus on air chemistry and quality. This study reports exchanges of CO2 and VOC between a poplar-based short rotation coppice (SRC) plantation and the atmosphere, measured simultaneously at two spatial scale, one at stand level and another at leaf level. The first technique combined Proton Transfer Reaction Time-of-Flight mass spectrometry (PTRTOFMS) with the eddy covariance method, to measure fluxes of a multitude of VOC. Abundant fluxes of isoprene, methanol and, to a lesser extent, fluxes of other oxygenated VOC such as formaldehyde, isoprene oxidation products (methyl vinyl ketone and methacrolein), methyl ethyl ketone, acetaldehyde, acetone and acetic acid, were measured. Under optimal environmental conditions, isoprene flux was mostly controlled by temperature and light. Differently, methanol flux underwent a combined enzymatic and stomatal control, together involving environmental drivers such as vapour pressure deficit (VPD), temperature and light intensity. Moreover fair weather condition favoured ozone deposition to the poplar plantation. The second technique involved trapping the VOCs emitted from leaves followed by gas chromatography-mass spectrometry (GCMS) analysis. These leaf-level measurements showed that emission of isoprene in adult leaves and of monoterpenes in juvenile leaves are widespread across poplar genotypes. Detection of isoprene oxidation products (iox) emission with leaf-level measurements confirmed that a fraction of isoprene may be already oxidized within leaves, possibly when isoprene copes with foliar reactive oxygen species (ROS) formed during warm and sunny days.
E-info
https://repository.uantwerpen.be/docman/iruaauth/5be96f/b749a07cdcb.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000331489100003&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000331489100003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000331489100003&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle