Title
Electron-electron interactions in bilayer graphene quantum dots Electron-electron interactions in bilayer graphene quantum dots
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Lancaster, Pa ,
Subject
Physics
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Volume/pages
88(2013) :24 , p. 1-5
ISSN
1098-0121
1550-235X
1098-0121
Article Reference
245432
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
A parabolic quantum dot (QD) as realized by biasing nanostructured gates on bilayer graphene is investigated in the presence of electron-electron interaction. The energy spectrum and the phase diagram reveal unexpected transitions as a function of a magnetic field. For example, in contrast to semiconductor QDs, we find a valley transition rather than only the usual singlet-triplet transition in the ground state of the interacting system. The origin of these features can be traced to the valley degree of freedom in bilayer graphene. These transitions have important consequences for cyclotron resonance experiments.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/77c112/6612.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000328688600010&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000328688600010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000328688600010&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle