Title
|
|
|
|
Braess paradox at the mesoscopic scale
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel. This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and interference. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
|
|
Publication
|
|
|
|
Lancaster, Pa
:
2013
|
|
ISSN
|
|
|
|
1098-0121
[print]
1550-235X
[online]
|
|
DOI
|
|
|
|
10.1103/PHYSREVB.88.245417
|
|
Volume/pages
|
|
|
|
88
:24
(2013)
, p. 1-6
|
|
Article Reference
|
|
|
|
245417
|
|
ISI
|
|
|
|
000328680500011
|
|
Medium
|
|
|
|
E-only publicatie
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (open access)
|
|
|
|
|
|