Title
Measurement of the <tex>$\Upsilon(1S)$</tex>, <tex>$\Upsilon(2S)$</tex>, and <tex>$\Upsilon(3S)$</tex> cross sections in pp collisions at <tex>$\sqrt{s}$</tex> = 7 TeV Measurement of the <tex>$\Upsilon(1S)$</tex>, <tex>$\Upsilon(2S)$</tex>, and <tex>$\Upsilon(3S)$</tex> cross sections in pp collisions at <tex>$\sqrt{s}$</tex> = 7 TeV
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Amsterdam ,
Subject
Physics
Source (journal)
Physics letters: B. - Amsterdam, 1967, currens
Volume/pages
727(2013) :1-3 , p. 101-125
ISSN
0370-2693
ISI
000328518400011
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The Upsilon(1S), Upsilon(2S), and Upsilon(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 +/- 1.4 pb(-1) of proton-proton collisions at root s = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the Upsilon transverse momentum range p(T)(Upsilon) < 50 GeV/c and rapidity range vertical bar y(Upsilon)vertical bar < 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are sigma (pp -> Upsilon(1S)X) . B(Upsilon(1S) -> mu(+)mu(-)) = (8.55 +/- 0.05(-0.50)(+0.56) +/- 0.34) nb, sigma (pp -> Upsilon(2S)X) . B(Upsilon(2S) -> mu(+)mu(-)) = (2.21 +/- 0.03(-0.14)(+0.16) +/- 0.09) nb, sigma (pp -> Upsilon(3S)X) . B(Upsilon(3S) -> mu(+)mu(-)) = (1.11 +/- 0.02(-0.08)(+0.10) +/- 0.04) nb, where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000328518400011&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000328518400011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000328518400011&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Full text (open access)
https://repository.uantwerpen.be/docman/irua/b2a17f/113756.pdf
Handle