Publication
Title
A finite element model for mechanical deformation of single tomato suspension cells
Author
Abstract
A finite element model was developed to simulate compression experiments on single tomato cells from suspension cultures. The cell was modelled as a thin-walled liquid-filled sphere with a permeable wall allowing flow of fluid out in response to internal turgor increases due to the compression. The permeability of the cell wall/plasma lemma was considered to be constant throughout compression. The contact between cell and compression probe was modelled using a soft contact boundary condition. The cytoplast was represented as an internal pressure acting on the plasma lemma and cell wall. Assuming linear elastic constitutive behaviour for the cell wall, and using previously determined cell wall material parameters, the model was found to be remarkably capable of reproducing the force-deformation behaviour of a single cell in compression, as well as its deformed shape, even for large strains. The model might be used as a building block to construct more comprehensive tissue deformation models. (C) 2010 Elsevier Ltd. All rights reserved.
Language
English
Source (journal)
Journal of food engineering. - Barking
Publication
Barking : 2011
ISSN
0260-8774
DOI
10.1016/J.JFOODENG.2010.10.023
Volume/pages
103 :3 (2011) , p. 265-272
ISI
000287275000006
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 24.02.2014
Last edited 14.02.2023
To cite this reference