Title
mTOR inhibition : a promising strategy for stabilization of atherosclerotic plaques mTOR inhibition : a promising strategy for stabilization of atherosclerotic plaques
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Pharmacy
Publication type
article
Publication
Amsterdam ,
Subject
Pharmacology. Therapy
Human medicine
Source (journal)
Atherosclerosis. - Amsterdam
Volume/pages
233(2014) :2 , p. 601-607
ISSN
0021-9150
ISI
000334337200043
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Statins are currently able to stabilize atherosclerotic plaques by lowering plasma cholesterol and pleiotropic effects, but a residual risk for atherosclerotic disease remains. Therefore, effective prevention of atherosclerosis and treatment of its complications is still a major clinical challenge. A large body of evidence indicates that mammalian target of rapamycin (mTOR) inhibitors such as rapamycin or everolimus have pleiotropic anti-atherosclerotic effects so that these drugs can be used as add-on therapy to prevent or delay the pathogenesis of atherosclerosis. Moreover, bioresorbable scaffolds eluting everolimus trigger a healing process in the vessel wall, both in pigs and humans, that results in late lumen enlargement and plaque regression. At present, this phenomenon of atheroregression is poorly understood. However, given that mTOR inhibitors suppress cell proliferation and trigger autophagy, a cellular survival pathway and a process linked to cholesterol efflux, we hypothesize that these compounds can inhibit (or reverse) the basic mechanisms that control plaque growth and destabilization. Unfortunately, adverse effects associated with mTOR inhibitors such as dyslipidemia and hyperglycemia have recently been identified. Dyslipidemia is manageable via statin treatment, while the anti-diabetic drug metformin would prevent hyperglycemia. Because metformin has beneficial macrovascular effects, this drug in combination with an mTOR inhibitor might have significant promise to treat patients with unstable plaques. Moreover, both statins and metformin are known to inhibit mTOR via AMPK activation so that they would fully exploit the beneficial effects of mTOR inhibition in atherosclerosis.
E-info
https://repository.uantwerpen.be/docman/iruaauth/644b2b/b3892444cb0.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000334337200043&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000334337200043&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000334337200043&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle