Publication
Title
Quantum mechanical solver for confined heterostructure tunnel field-effect transistors
Author
Abstract
Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement. (C) 2014 AIP Publishing LLC.
Language
English
Source (journal)
Journal of applied physics / American Institute of Physics. - New York, N.Y., 1937, currens
Publication
New York, N.Y. : American Institute of Physics, 2014
ISSN
0021-8979 [print]
1089-7550 [online]
Volume/pages
115:5(2014), p. 1-8
Article Reference
053706
ISI
000331645900040
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 04.04.2014
Last edited 18.09.2017
To cite this reference