Publication
Title
Accelerated ageing of shales of palaeontological interest : impact of temperature conditions
Author
Abstract
The palaeontological collections of the Muséum national dHistoire naturelle (MNHN, Paris, France) and the Muséum dHistoire naturelle dAutun (MHNA, Autun, France) include many fossil specimens originating from the argillaceous shales of the Autun basin (Saône-et-Loire, France). These fossils are preserved within sedimentary rocks containing unstable sulphide compounds, such as pyrite, which may deteriorate in contact with water and oxygen. This alteration provokes crystalline efflorescence and cracks, thus compromising the preservations of the fossils. This work constitutes the first step of a project that aims to understand the mechanisms of alteration of these materials in order to define conservation guidelines for palaeontological collections. For this purpose, eight damaged specimens originating from the Permian Autun basin (Saône-et-Loire, France) were selected and analyzed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy coupled to energy dispersive X-ray spectrometry (SEM/EDS) and X-ray absorption spectroscopy at the threshold of the sulphur Kα-edge (XANES). This methodology enabled the characterization of the matrices composition and the chemical nature of the alterations. Subsequently, we have sought to reproduce by artificial ageing the alteration phenomena encountered in the collections. New shale samples were collected on seven outcrops of the same Autun basin. They were analyzed and subjected to artificial ageing at 50% relative humidity (RH) and at temperatures ranging between 40 °C and 90 °C. Our work shows that damaged specimens and newly collected shale have a similar mineralogical composition. Yet the crystalline efflorescence material formed on the surface of damaged specimens belongs to the iron sulphate group whereas gypsum predominates on artificially aged shale samples. Reproducing the alterations observed on specimens by artificial ageing remains therefore problematic. Additionally, it appears that the temperature of ageing controls the nature of the damage: at 40 °C, many samples are mechanically damaged whereas no or minor crystalline efflorescence occurs. At 90 °C, it is the opposite tendency that is observed. Finally, mechanical damages do not seem to be correlated with the development of the efflorescence: samples with efflorescent crystals generally do not show clearly visible cracks; those that seem most fragmented do not show any visible efflorescence.
Language
English
Source (journal)
Annales de paléontologie. - Barcelone
Publication
Barcelone : 2014
ISSN
0753-3969
DOI
10.1016/J.ANNPAL.2013.12.002
Volume/pages
100 :2 (2014) , p. 137-149
ISI
000338607500006
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Building up of expertise for the performance of accelerated weathering tests in the area of conservation science.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 29.04.2014
Last edited 09.10.2023
To cite this reference