Publication
Title
Comparison of biofilm formation between major clonal lineages of methicillin resistant **Staphylococcus aureus **
Author
Abstract
Objectives Epidemic methicillin-resistant S. aureus (MRSA) clones cause infections in both hospital and community settings. As a biofilm phenotype further facilitates evasion of the host immune system and antibiotics, we compared the biofilm-forming capacities of various MRSA clones. Methods Seventy-six MRSA classified into 13 clones (USA300, EMRSA-15, Hungarian/Brazilian etc.), and isolated from infections or from carriers were studied for biofilm formation under static and dynamic conditions. Static biofilms in microtitre plates were quantified colorimetrically. Dynamic biofilms (Bioflux 200, Fluxion, USA) were studied by confocal laser-scanning and time-lapse microscopy, and the total volume occupied by live/dead bacteria quantified by Volocity 5.4.1 (Improvision, UK). Results MRSA harbouring SCCmec IV produced significantly more biomass under static conditions than SCCmec IIII (P = 0.003), and those harbouring SCCmec II significantly less than those harbouring SCCmec I or III (P<0.001). In the dynamic model, SCCmec IIII harbouring MRSA were significantly better biofilm formers than SCCmec IV (P = 0.036). Only 16 strains successfully formed biofilms under both conditions, of which 13 harboured SCCmec IV and included all tested USA300 strains (n = 3). However, USA300 demonstrated remarkably lower percentages of cell-occupied space (6.6%) compared to the other clones (EMRSA-15 = 19.0%) under dynamic conditions. Time-lapse microscopy of dynamic biofilms demonstrated that USA300 formed long viscoelastic tethers that stretched far from the point of attachment, while EMRSA-15 consisted of micro-colonies attached densely to the surface. Conclusions MRSA harbouring SCCmec types IV and IIII demonstrate distinct biofilm forming capacities, possibly owing to their adaptation to the community and hospital settings, respectively. USA300 demonstrated abundant biofilm formation under both conditions, which probably confers a competitive advantage, contributing to its remarkable success as a pathogen.
Language
English
Source (journal)
PLoS ONE
Publication
2014
ISSN
1932-6203
DOI
10.1371/JOURNAL.PONE.0104561
Volume/pages
9 :8 (2014) , 8 p.
Article Reference
e104561
ISI
000343231900070
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
The role of bacterial biofilms as a major cause of therapeutic failure in intensive care units (ICU): an in vitro and in vivo study of 'biofilm' virulence factors.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 25.08.2014
Last edited 04.03.2024
To cite this reference