Title
Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers
Author
Faculty/Department
Faculty of Sciences. Bioscience Engineering
Publication type
article
Publication
Cambridge ,
Subject
Chemistry
Biology
Source (journal)
Environmental science : processes & impacts. - Cambridge, 2013, currens
Volume/pages
16(2014) :6 , p. 1510-1518
ISSN
2050-7887
ISI
000336841600031
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The effects on river water quality of sewer overflows are not well known. Since the duration of the overflow is in the order of magnitude of minutes to hours, continuous measurements of water quality are needed and traditional grab sampling is unable to quantify the pollution loads. The objective of this paper was to demonstrate the applicability of high frequency measurements for assessing the impacts of waste water treatment plants on the water quality of the receiving surface water. In our in situ water quality monitoring setup, two types of multiparameter sensors mounted on a floating fixed platform were used to determine the dynamics of dissolved oxygen, specific conductivity, ammonium-N, nitrate-N and dissolved organic carbon downstream of a waste water treatment plant (WWTP), in combination with data on rainfall, river discharge and WWTP overflow discharge. The monitoring data for water quantity and water quality were used to estimate the pollution load from waste water overflow events and to assess the impact of waste water overflows on the river water quality. The effect of sewer overflow on a small river in terms of N load was shown to be significant. The WWTP overflow events accounted for about 1/3 of the river discharge. The NH4-N loads during overflow events contributed 29% and 21% to the August 2010 and June 2011 load, respectively, in only 8% and 3% of the monthly time span. The results indicate that continuous monitoring is needed to accurately represent the effects of sewer overflows in river systems.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000336841600031&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000336841600031&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000336841600031&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle