Publication
Title
Neutron radiography and tomography applied to fuel degradation during ramp tests and loss of coolant accident tests in a research reactor
Author
Abstract
Neutron radiography (NR) is performed at the Institute for Energy Technology (IFE) in Norway since the late 1970s. The application of the non-destructive method was to acquire post-irradiation examination (PIE) data (e.g. fuel integrity and hydrogen up-take in cladding) from safety and integrity tests of nuclear fuels performed under the Organization for Economic Co-operation and Development (OECD) Halden Reactor Project (HRP). The method was later applied under re-fabrication and instrumentation operations of experimental nuclear fuel rods prior to testing in Halden Boiling Water Reactor (HBWR), and for a variety of PIE projects, e.g. reactor power ramp testing, PCI failure detection and fuel degradation experiments. Neutron radiography has also proved to be a very useful tool for examination of nuclear fuels irradiated in the Loss-of-Coolant Accident (LOCA) experimental series initiated in the early 2000s. Neutron tomography data is acquired while an increased international focus arose on fuel fragmentation, fuel relocation and fuel dispersal processes that occur during the LOCA events for high burn-up nuclear fuels. Hydrogen up-take of the fuel cladding, fuel pellet-clad bonding condition, fuel fragmentation, particle size distributions, and other features obtained from neutron tomography data are quite relevant for reactor core safety impact study of LOCA events simulated in the HBWR. Neutron tomography studies of LOCA tested fuel were done in cooperation with the SCK CEN institute in Mol, Belgium, and the University of Antwerp in Belgium. It's interesting to observe that the image reconstruction results obtained from the SART method are quite good regarding the relatively few sample rotations utilized under acquisition of neutron radiography projections in the tomography studies of the LOCA examination. (C) 2013 Elsevier Ltd. All rights reserved.
Language
English
Source (journal)
Progress in nuclear energy. - Oxford
Publication
Oxford : 2014
ISSN
0079-6530
0149-1970
Volume/pages
72(2014), p. 55-62
ISI
000337651400012
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 28.08.2014
Last edited 26.06.2017
To cite this reference