Title
The interband optical absorption in silicon quantum wells : application of the 30-band k . p model The interband optical absorption in silicon quantum wells : application of the 30-band k . p model
Author
Faculty/Department
Faculty of Sciences. Chemistry
Faculty of Sciences. Physics
Publication type
article
Publication
New York, N.Y. :American Institute of Physics ,
Subject
Physics
Source (journal)
Applied physics letters / American Institute of Physics. - New York, N.Y., 1962, currens
Volume/pages
104(2014) :24 , 5 p.
ISSN
0003-6951
1077-3118
0003-6951
Article Reference
242103
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The interband optical absorption in Si/SiO2 quantum wells is calculated as function of the well width (W) and the evolution from an indirect to a direct gap material as function of the well width is investigated. In order to compute the electron states in the conduction band, the 30-band k . p model is employed, whereas the 6-band Luttinger-Kohn model is used for the hole states. We found that the effective direct band gap in the quantum well agrees very well with the W-2 scaling result of the single-band model. The interband matrix elements for linear polarized light oscillate with the quantum well width, which agrees qualitatively with a single band calculation. Our theoretical results indicate that the absorption can be maximized by a proper choice of the well width. However, the obtained absorption coefficients are at least an order of magnitude smaller than for a typical direct semiconductor even for a well width of 2 nm. (C) 2014 AIP Publishing LLC.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000337915000033&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000337915000033&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000337915000033&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle