Title
Pseudo-outbreak of pre-extensively drug-resistant (Pre-XDR) tuberculosis in Kinshasa : collateral damage caused by false detection of fluoroquinolone resistance by genoType MTBDRsl Pseudo-outbreak of pre-extensively drug-resistant (Pre-XDR) tuberculosis in Kinshasa : collateral damage caused by false detection of fluoroquinolone resistance by genoType MTBDRsl
Author
Faculty/Department
Institute of Development Policy and Management
Faculty of Medicine and Health Sciences
Publication type
article
Publication
Washington, D.C. ,
Subject
Biology
Source (journal)
Journal of clinical microbiology. - Washington, D.C.
Volume/pages
52(2014) :8 , p. 2876-2880
ISSN
0095-1137
ISI
000339544200020
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Fluoroquinolones are the core drugs for the management of multidrug-resistant tuberculosis (MDR-TB). Molecular drug susceptibility testing methods provide considerable advantages for scaling up programmatic management and surveillance of drug-resistant TB. We describe here the misidentification of fluoroquinolone resistance by the GenoType MTBDRsl (MTBDRsl) (Hain Lifescience GmbH, Nehren, Germany) line probe assay (LPA) encountered during a feasibility and validation study for the introduction of this rapid drug susceptibility test in Kinshasa, Democratic Republic of Congo. The double gyrA mutation 80Ala and 90Gly represented 57% of all fluoroquinolone mutations identified from MDR-TB patient sputum samples, as confirmed by DNA sequencing. This double mutation was previously found to be associated with susceptibility to fluoroquinolones, yet it leads to absent hybridization of a wild-type band in the MTBDRsl and is thus falsely scored as resistance. Our findings suggest that MTBDRsl results must be interpreted with caution when the interpretation is based solely on the absence of a wild-type band without confirmation by visualization of a mutant band. Performance of the MTBDRsl LPA might be improved by replacing the gyrA wild-type probes by additional probes specific for well-documented gyrA mutations that confer clinically relevant resistance.
E-info
https://repository.uantwerpen.be/docman/iruaauth/8fe2f5/4fd8191.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000339544200020&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000339544200020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000339544200020&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle