Publication
Title
Anharmonic effects on thermodynamic properties of a graphene monolayer
Author
Abstract
We extend the unsymmetrized self-consistent-field method (USF) for anharmonic crystals to layered non-Bravais crystals to investigate structural, dynamical and thermodynamic properties of a free-standing graphene monolayer. In this theory, the main anharmonicity of the crystal lattice has been included and the quantum corrections are taken into account in an h-expansion for the one-particle density matrix. The obtained result for the thermal expansion coefficient (TEC) of graphene shows a strong temperature dependence and agrees with experimental results by Bao et al. (Nat. Nanotechnol., 4 (2009) 562). The obtained value of TEC at room temperature (300 K) is -6.4 x 10(- 6) K- 1 and it becomes positive for T > T-alpha = 358K. We find that quantum effects are significant for T < 1000 K. The interatomic distance, effective amplitudes of the graphene lattice vibrations, adiabatic and isothermal bulk moduli, isobaric and isochoric heat capacities are also calculated and their temperature dependences are determined. Copyright (C) EPLA, 2014
Language
English
Source (journal)
Europhysics letters / Société européenne de physique. - Les Ulis, 1986, currens
Publication
Les Ulis : Les éditions de physique , 2014
ISSN
0295-5075
1286-4854
DOI
10.1209/0295-5075/107/56004
Volume/pages
107 :5 (2014) , 6 p.
Article Reference
56004
ISI
000341559900020
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 09.10.2014
Last edited 09.10.2023
To cite this reference