Title
Deformation quantization with traces Deformation quantization with traces
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Dordrecht ,
Subject
Mathematics
Source (journal)
Letters in mathematical physics. - Dordrecht
Volume/pages
53(2000) :1 , p. 75-86
ISSN
0377-9017
ISI
000165478300007
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
In this Letter we prove a statement closely related to the cyclic formality conjecture. In particular, we prove that for a constant volume form Ω and a Poisson bivector field π on R d such that divΩπ=0, the Kontsevich star product with the harmonic angle function is cyclic, i.e. ∫Rd (f*g)·h·Ω=∫ ∫Rd (g*h)·f·Ω for any three functions f,g,h on Rd (for which the integrals make sense). We also prove a globalization of this theorem in the case of arbitrary Poisson manifolds and an arbitrary volume form, and prove a generalization of the ConnesFlatoSternheimer conjecture on closed star products in the Poisson case.
E-info
https://repository.uantwerpen.be/docman/iruaauth/fd2b19/abbf8e3b7ca.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000165478300007&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000165478300007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000165478300007&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848