Title
Integration of the lifting formulas and the cyclic homology of the algebras of differential operators Integration of the lifting formulas and the cyclic homology of the algebras of differential operators
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Basel ,
Subject
Mathematics
Source (journal)
Geometric and functional analysis. - Basel
Volume/pages
11(2001) :5 , p. 1096-1124
ISSN
1016-443X
ISI
000173166500007
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
We integrate the Lifting cocycles Ψ2n+1,Ψ2n+3,Ψ2n+5,([Sh1,2]) on the Lie algebra Dif n of holomorphic differential operators on an n-dimensional complex vector space to the cocycles on the Lie algebra of holomorphic differential operators on a holomorphic line bundle λ on an n-dimensional complex manifold M in the sense of GelfandFuks cohomology [GF] (more precisely, we integrate the cocycles on the sheaves of the Lie algebras of finite matrices over the corresponding associative algebras). The main result is the following explicit form of the FeiginTsygan theorem [FT1]:¶¶ H∙Lie(glfin∞(Difn);C)=∧∙(Ψ2n+1,Ψ2n+3,Ψ2n+5,) .
E-info
https://repository.uantwerpen.be/docman/iruaauth/de5401/d0a583e51b8.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000173166500007&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000173166500007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000173166500007&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848