Title
Vanishing of the Kontsevich integrals of the wheels
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Dordrecht ,
Subject
Mathematics
Source (journal)
Letters in mathematical physics. - Dordrecht
Volume/pages
56(2001) :2 , p. 141-149
ISSN
0377-9017
ISI
000169864900004
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
We prove that the Kontsevich integrals (in the sense of the formality theorem) of all even wheels are equal to zero. These integrals appear in the approach to the Duflo formula via the formality theorem. The result means that for any finite-dimensional Lie algebra g, and for invariant polynomials f, g ∈ [S ·(g)]g one has f · g = f * g, where * is the Kontsevich star product, corresponding to the KirillovPoisson structure on g*. We deduce this theorem form the result contained in math.QA/0010321 on the deformation quantization with traces.
E-info
https://repository.uantwerpen.be/docman/iruaauth/2b386f/7e8e17188d1.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000169864900004&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000169864900004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000169864900004&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848