Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networksRepetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences . Biomedical Sciences
Research group
Theoretical neurobiology
Publication type
San Diego, Calif.,
Human medicine
Source (journal)
Neurobiology of disease. - San Diego, Calif.
19(2005):1/2, p. 119-128
Target language
English (eng)
Full text (Publishers DOI)
Deep-brain electrical or transcranial magnetic stimulation may represent a therapeutic tool for controlling seizures in patients presenting with epileptic disorders resistant to antiepileptic drugs. In keeping with this clinical evidence, we have reported that repetitive electrical stimuli delivered at approximately 1 Hz in mouse hippocampus-entorhinal cortex (EC) slices depress the EC ability to generate ictal activity induced by the application of 4-aminopyridine (4AP) or Mg2+-free medium (Barbarosie, M., Avoli, M., 1997. CA3-driven hippocampalentorhinal loop controls rather than sustains in vitro limbic seizures. J. Neurosci. 17, 93089314.). Here, we confirmed a similar control mechanism in rat brain slices analyzed with field potential recordings during 4AP (50 μM) treatment. In addition, we used intrinsic optical signal (IOS) recordings to quantify the intensity and spatial characteristics of this inhibitory influence. IOSs reflect the changes in light transmittance throughout the entire extent of the slice, and are thus reliable markers of limbic network epileptiform synchronization. First, we found that in the presence of 4AP, the IOS increases, induced by a train of electrical stimuli (10 Hz for 1 s) or by recurrent, single-shock stimulation delivered at 0.05 Hz in the deep EC layers, are reduced in intensity and area size by low-frequency (1 Hz), repetitive stimulation of the subiculum; these effects were observed in all limbic areas contained in the slice. Second, by testing the effects induced by repetitive subicular stimulation at 0.210 Hz, we identified maximal efficacy when repetitive stimuli are delivered at 1 Hz. Finally, we discovered that similar, but slightly less pronounced, inhibitory effects occur when repetitive stimuli at 1 Hz are delivered in the EC, suggesting that the reduction of IOSs seen during repetitive stimulation is pathway dependent as well as activity dependent. Thus, the activation of limbic networks at low frequency reduces the intensity and spatial extent of the IOS changes that accompany ictal synchronization in an in vitro slice preparation. This conclusion supports the view that repetitive stimulation may represent a potential therapeutic tool for controlling seizures in patients with pharmacoresistant epileptic disorders.