Title
Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Bristol ,
Subject
Physics
Chemistry
Source (journal)
New journal of physics / Institute of Physics; German Physical Society. - Bristol
Volume/pages
16(2014) , 11 p.
ISSN
1367-2630
1367-2630
Article Reference
113036
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
In metallized film capacitors, there exists an air gap of about 0.2 μm between the films, with a pressure ranging generally from 130 atm. Because of the created potential difference between the two films, a microdischarge is formed in this gap. In this paper, we use an implicit particle-in-cell Monte Carlo collision simulation method to study the discharge properties in this direct-current microdischarge with 0.2 μm gap in a range of different voltages and pressures. The discharge process is significantly different from a conventional high pressure discharge. Indeed, the high electric field due to the small gap sustains the discharge by field emission. At low applied voltage (~15 V), only the electrons are generated by field emission, while both electrons and ions are generated as a stable glow discharge at medium applied voltage (~50 V). At still higher applied voltage (~100 V), the number of electrons and ions rapidly multiplies, the electric field reverses, and the discharge changes from a glow to an arc regime.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/f9624c/19e46486.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000346763400006&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000346763400006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000346763400006&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle