Title
Use of a ray-based reconstruction algorithm to accurately quantify preclinical microSPECT imagesUse of a ray-based reconstruction algorithm to accurately quantify preclinical microSPECT images
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Research group
Molecular Imaging, Pathology, Radiotherapy & Oncology (MIPRO)
Publication type
article
Publication
Subject
Chemistry
Biology
Computer. Automation
Source (journal)
Molecular imaging
Volume/pages
13(2014), 13 p.
ISSN
1535-3508
ISI
000344215400003
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
This work aimed to measure the in vivo quantification errors obtained when ray-based iterative reconstruction is used in micro-singlephoton emission computed tomography (SPECT). This was investigated with an extensive phantom-based evaluation and two typical in vivo studies using (99m) Tc and In-111, measured on a commercially available cadmium zinc telluride (CZT)-based small-animal scanner. Iterative reconstruction was implemented on the GPU using ray tracing, including (1) scatter correction, (2) computed tomographybased attenuation correction, (3) resolution recovery, and (4) edge-preserving smoothing. It was validated using a National Electrical Manufacturers Association (NEMA) phantom. The in vivo quantification error was determined for two radiotracers: [Tc-99m] DMSA in naive mice (n = 10 kidneys) and [In-111] octreotide in mice (n = 6) inoculated with a xenograft neuroendocrine tumor (NCI-H727). The measured energy resolution is 5.3% for 140.51 keV (Tc-99m), 4.8% for 171.30 keV, and 3.3% for 245.39 keV (In-111). For Tc-99m, an uncorrected quantification error of 28 +/- 3% is reduced to 8 63%. For In-111, the error reduces from 26 +/- 14% to 6 +/- 22%. The in vivo error obtained with Tc-99m-dimercaptosuccinic acid ([Tc-99m] DMSA) is reduced from 16.2 +/- 2.8% to -0.3 +/- 2.1% and from 16.7 +/- 10.1% to 2.2 +/- 10.6% with [In-111] octreotide. Absolute quantitative in vivo SPECT is possible without explicit system matrix measurements. An absolute in vivo quantification error smaller than 5% was achieved and exemplified for both [Tc-99m] DMSA and [In-111] octreotide.
E-info
https://repository.uantwerpen.be/docman/iruaauth/3058d9/f4b9283.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000344215400003&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000344215400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle