Publication
Title
Allosteric modulators of G protein-coupled receptors : future therapeutics for complex physiological disorders
Author
Abstract
G protein-coupled receptors (GPCRs) are one of the most important classes of proteins in the genome, not only because of their tremendous molecular diversity but because they are the targets of nearly 50% of current pharmacotherapeutics. The majority of these drugs affect GPCR activity by binding to a similar molecular site as the endogenous cognate ligand for the receptor. These "orthosterically" targeted drugs currently dominate the existing pharmacopeia. Over the past two decades, novel opportunities for drug discovery have risen from a greater understanding of the complexity of GPCR signaling. A striking example of this is the appreciation that many GPCRs possess functional allosteric binding sites. Allosteric modulator ligands bind receptor domains topographically distinct from the orthosteric site, altering the biological activity of the orthosteric ligand by changing its binding affinity, functional efficacy, or both. This additional receptor signaling complexity can be embraced and exploited for the next generation of GPCR-targeted therapies. Despite the challenges associated with detecting and quantifying the myriad of possible allosteric effects on GPCR activity, allosteric ligands offer the prospect of engendering a facile stimulus-bias in orthosteric ligand signaling, paving the way for not only receptor-selective but also signaling pathway-selective therapies. Allosteric modulators possess specific advantages when considering the treatment of multifactorial syndromes, such as metabolic diseases or age-related cognitive impairment, because they may not greatly affect neurotransmitter or hormone release patterns, thus maintaining the integrity of complex signaling networks that underlie perception, memory patterns, or neuroendocrinological axes while introducing therapeutically beneficial signal bias.
Language
English
Source (journal)
The journal of pharmacology and experimental therapeutics. - Baltimore, Md
Publication
Baltimore, Md : 2009
ISSN
0022-3565 [print]
1521-0103 [online]
DOI
10.1124/JPET.109.156380
Volume/pages
331 :2 (2009) , p. 340-348
ISI
000271006200001
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 06.01.2015
Last edited 26.01.2023
To cite this reference