Publication
Title
Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade : role of focal adhesions and receptor tyrosine kinases
Author
Abstract
G protein-coupled receptors (GPCRs)initiate Ras-dependent activation of the Erk 1/2 mitogen-activated protein kinase cascade by stimulating recruitment of Ras guanine nucleotide exchange factors to the plasma membrane. Both integrin-based focal adhesion complexes and receptor tyrosine kinases have been proposed as scaffolds upon which the GPCR-induced Ras activation complex may assemble. Using specific inhibitors of focal adhesion complex assembly and receptor tyrosine kinase activation, we have determined the relative contribution of each to activation of the Erk 1/2 cascade following stimulation of endogenous GPCRs in three different cell types. The tetrapeptide RGDS, which inhibits integrin dimerization, and cytochalasin D, which depolymerizes the actin cytoskeleton, disrupt the assembly of focal adhesions. In PC12 rat pheochromocytoma cells, both agents block lysophosphatidic acid (LPA)- and bradykinin-stimulated Erk 1/2 phosphorylation, suggesting that intact focal adhesion complexes are required for GPCR-induced mitogen-activated protein kinase activation in these cells, In Rat 1 fibroblasts, Erk 1/2 activation via LPA and thrombin receptors is completely insensitive to both agents. Conversely, the epidermal growth factor receptor-specific tyrphostin AG1478 inhibits GPCR-mediated Erk 1/2 activation in Rat 1 cells but has no effect in PC12 cells. In HEH-293 human embryonic kidney cells, LPA and thrombin receptor-mediated Erk 1/2 activation is partially sensitive to both the RGDS peptide and tyrphostin AG1478, suggesting that both focal adhesion and receptor tyrosine kinase scaffolds are employed in these cells. The dependence of GPCR-mediated Erk 1/2 activation on intact focal adhesions correlates with expression of the calcium-regulated focal adhesion kinase, Pyk2, In all three cell types, GPCR-stimulated Erk 1/2 activation is significantly inhibited by the Src kinase inhibitors, herbimycin A and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyra-zolo-D-3,4-pyrimidine (PP1), suggesting that Src family nonreceptor tyrosine kinases represent a point of convergence for signals originating from either scaffold.
Language
English
Source (journal)
Journal of biological chemistry. - Baltimore, Md
Publication
Baltimore, Md : 1999
ISSN
0021-9258 [print]
1083-351X [online]
DOI
10.1074/JBC.274.20.13978
Volume/pages
274 :20 (1999) , p. 13978-13984
ISI
000080322200038
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Project info
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 06.01.2015
Last edited 26.01.2023
To cite this reference