Publication
Title
Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties
Author
Abstract
We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self-and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self-and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
Language
English
Source (journal)
Physical review : E : statistical, nonlinear, and soft matter physics / American Physical Society. - Melville, N.Y., 2001 - 2015
Publication
Melville, N.Y. : American Physical Society, 2014
ISSN
1539-3755 [print]
1550-2376 [online]
Volume/pages
90:5(2014), 16 p.
Article Reference
052139
ISI
000345251500004
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
[E?say:metaLocaldata.cgzprojectinf]
Irreversibility and efficiency in small-scale systems.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 13.01.2015
Last edited 25.09.2017
To cite this reference