Publication
Title
Current-voltage characteristics of armchair Sn nanoribbons
Author
Abstract
Two-dimensional group-IV lattices silicene and germanene are known to share many of graphene's remarkable mechanical and electronic properties. Due to the out-of-plane buckling of the former materials, there are more means of electronic funtionalization, e.g. by applying uniaxial strain or an out-of-plane electric field. We consider monolayer hexagonal Sn (stanene) as an ideal candidate to feasibly implement and exploit graphene physics for nanoelectronic applications: with increased out-of-plane buckling and sizable spin-orbit coupling it lends itself to improved Dirac cone engineering. We investigate the ballistic charge transport regime of armchair Sn nanoribbons, classified according to the ribbon width W = {3m - 1, 3m, 3m + 1} with integer m. We study transport through (non-magnetic) armchair ribbons using a combination of density functional theory and non-equilibrium Green's functions. Sn ribbons have earlier current onsets and carry currents 20% larger than C/Si/Ge-nanoribbons as the contact resistance of these ribbons is found to be comparable. ((c) 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)
Language
English
Source (journal)
Physica status solidi: rapid research letters. - Berlin
Publication
Berlin : 2014
ISSN
1862-6254
Volume/pages
8:11(2014), p. 931-934
ISI
000345274300009
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
[E?say:metaLocaldata.cgzprojectinf]
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 13.01.2015
Last edited 04.11.2017
To cite this reference