Title
Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Veterinary Sciences
Publication type
article
Publication
Baltimore, Md ,
Subject
Biology
Human medicine
Source (journal)
Fertility and sterility. - Baltimore, Md
Volume/pages
102(2014) :6 , p. 1769-U607
ISSN
0015-0282
ISI
000345613600044
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Objective: To study how long-term elevated non-esterified fatty acid (NEFA) concentrations, typical in metabolic disorders such as obesity or type 2 diabetes, affect murine follicular development, follicle quality, and subsequent oocyte developmental competence in vitro. Design: Experimental study. Setting: In vitro culture setting. Animal(s): Female and male 13-day old, B6CBAF1 mice of proven fertility were sacrificed for harvesting ovaries and epididymal sperm, respectively. Intervention(s): Early secondary murine follicles were cultured in vitro in the presence of NEFAs until the antral stage (12 days). Treatments consisted of one or a mixture of NEFAs (stearic acid [SA], palmitic acid [PA], oleic acid [OA]) in physiological (basal) or pathological (high SA, high OA, high NEFA) concentrations. Main Outcome Measure(s): Follicular development; follicle and oocyte diameters; secretion of progesterone, estradiol, and inhibin B; and luteinized granulosa cell gene expression patterns were investigated. Oocytes from NEFA-exposed follicles were fertilized in vitro, and presumptive zygotes were cultured until the blastocyst stage. Result(s): Exposure to high SA reduced follicle diameters and day-12 antrum formation. Elevated NEFA concentrations changed luteinized granulosa cell messenger-ribonucleic acid abundance of genes related to energy/fatty acid/steroid metabolism, apoptosis, and oxidative stress. High NEFA and high SA treatments increased progesterone synthesis, compared with high OA follicles. Oocyte developmental competence was substantially reduced in oocytes retrieved from high OA-, high SA-, and high NEFA-exposed follicles compared with basal-treated follicles. Conclusion(s): This study showed, for the first time, that lipolysis-linked, elevated NEFA concentrations can potentially impair fertility, by altering follicular physiology and reducing oocyte developmental competence. (C) 2014 by American Society for Reproductive Medicine.)
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345613600044&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345613600044&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345613600044&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
https://repository.uantwerpen.be/docman/iruaauth/0ea9bf/c6a122182.pdf
Handle