Title
A 2D model for a gliding arc discharge A 2D model for a gliding arc discharge
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Bristol :Institute of Physics ,
Subject
Physics
Chemistry
Source (journal)
Plasma sources science and technology / Institute of Physics. - Bristol, 1992, currens
Volume/pages
24(2015) :1 , 16 p.
ISSN
0963-0252
0963-0252
Article Reference
015025
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
E-info
https://repository.uantwerpen.be/docman/iruaauth/4ed02d/529b7b61472.pdf
Full text (open access)
https://repository.uantwerpen.be/docman/irua/46e772/9245.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000348298200026&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000348298200026&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000348298200026&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle