Title
Microbial resource management of one-stage partial nitritation/anammox
Author
Faculty/Department
Faculty of Sciences. Bioscience Engineering
Publication type
article
Publication
Subject
Biology
Engineering sciences. Technology
Source (journal)
Microbial Biotechnology
Volume/pages
5(2012) :3 , p. 433-448
ISSN
1751-7907
ISI
000302858900013
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
About 30 full-scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two-stage and one-stage processes each have their advantages, the one-stage configuration is mostly applied, termed here as oxygen-limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. The OLAND application domain is gradually expanding, with technical-scale plants on source-separated domestic wastewater, pre-treated manure and sewage, and liquors from organic waste bioenergy plants. A microbial resource management (MRM) OLAND framework was elaborated, showing how the OLAND engineer/operator (1: input) can design/steer the microbial community (2: biocatalyst) to obtain optimal functionality (3: output). In the physicochemical toolbox (1), design guidelines are provided, as well as advantages of different reactor technologies. Particularly the desirable aeration regime, feeding regime and shear forces are not clear yet. The development of OLAND trickling filters, membrane bioreactors and systems with immobilized biomass is awaited. The biocatalyst box (2) considers Who: biodiversity and its dynamic patterns, What: physiology, and Where: architecture creating substrate gradients. Particularly community dynamics and extracellular polymeric substances (EPS) still require insights. Performant OLAND (3) comprises fast start-up (storage possibility; fast growth of anammox bacteria), process stability (endured biomass retention; stress resilience), reasonable overall costs, high nitrogen removal efficiency and a low environmental footprint. Three important OLAND challenges are elaborated in detailed frameworks, demonstrating how to maximize nitrogen removal efficiency, minimize NO and N2O emissions and obtain through OLAND a plant-wide net energy gain from sewage treatment.
E-info
https://repository.uantwerpen.be/docman/iruaauth/949b56/08f9345.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302858900013&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302858900013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302858900013&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848