Publication
Title
New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions
Author
Abstract
The counterions are of crucial importance in determining the mesostructure and morphology of ethanebridged PMO materials synthesized under basic conditions. By using CTABr as the surfactant, the final PMO materials show a 2-D hexagonal (p6mm) mesophase, while PMO materials with cubic (Pm (3) over barn ) mesostructure are obtained when CTACl or CTA(SO4)(1)/(2) are used. With gradually replacing CTABr by CTACl or CTA(SO4) (1)/(2) while keeping the total surfactant concentration constant, a clear p6mm to Pm (3) over barn 3n mesophase evolution process is observed. For a given gel composition, the mesophase of ethanebridged PMO materials can also be adjusted by the addition of different sodium salts. In short, the effect of the counterions on the mesophase can be attributed to the binding strength of the ions on the surfactant micelles, which follows the Hofmeister series (SO42- < Cl- < Br-< NO3- < SCN-). Furthermore, it is found that the hydrolysis and condensation rate of the organosilica precursor also plays an important role in the formation of the final mesostructure
Language
English
Source (journal)
RSC advances
Publication
2015
ISSN
2046-2069
DOI
10.1039/C4RA15849K
Volume/pages
5 :8 (2015) , p. 5553-5562
ISI
000347304900010
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Optimization of the structure-activity relation in nanoporous materials.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 13.03.2015
Last edited 09.10.2023
To cite this reference