Title
Population variation in biomonitoring data for persistent organic pollutants (POPs) : an examination of multiple population-based datasets for application to Australian pooled biomonitoring data Population variation in biomonitoring data for persistent organic pollutants (POPs) : an examination of multiple population-based datasets for application to Australian pooled biomonitoring data
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences . Biomedical Sciences
Publication type
article
Publication
Oxford ,
Subject
Biology
Human medicine
Source (journal)
Environment international. - Oxford
Volume/pages
68(2014) , p. 127-135
ISSN
0160-4120
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
Background Australian national biomonitoring for persistent organic pollutants (POPs) relies upon age-specific pooled serum samples to characterize central tendencies of concentrations but does not provide estimates of upper bound concentrations. This analysis compares population variation from biomonitoring datasets from the US, Canada, Germany, Spain, and Belgium to identify and test patterns potentially useful for estimating population upper bound reference values for the Australian population. Methods Arithmetic means and the ratio of the 95th percentile to the arithmetic mean (P95:mean) were assessed by survey for defined age subgroups for three polychlorinated biphenyls (PCBs 138, 153, and 180), hexachlorobenzene (HCB), p,p-dichlorodiphenyldichloroethylene (DDE), 2,2′,4,4′ tetrabrominated diphenylether (PBDE 47), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Results Arithmetic mean concentrations of each analyte varied widely across surveys and age groups. However, P95:mean ratios differed to a limited extent, with no systematic variation across ages. The average P95:mean ratios were 2.2 for the three PCBs and HCB; 3.0 for DDE; 2.0 and 2.3 for PFOA and PFOS, respectively. The P95:mean ratio for PBDE 47 was more variable among age groups, ranging from 2.7 to 4.8. The average P95:mean ratios accurately estimated age group-specific P95s in the Flemish Environmental Health Survey II and were used to estimate the P95s for the Australian population by age group from the pooled biomonitoring data. Conclusions Similar population variation patterns for POPs were observed across multiple surveys, even when absolute concentrations differed widely. These patterns can be used to estimate population upper bounds when only pooled sampling data are available.
E-info
https://repository.uantwerpen.be/docman/iruaauth/e6108b/1c72fca94c1.pdf