Publication
Title
BRAIN 2.0 : time and memory complexity improvements in the algorithm for calculating the isotope distribution
Author
Abstract
Recently, an elegant iterative algorithm called BRAIN (Baffling Recursive Algorithm for Isotopic distributioN calculations) was presented. The algorithm is based on the classic polynomial method for calculating aggregated isotope distributions, and it introduces algebraic identities using Newton-Girard and ViSte's formulae to solve the problem of polynomial expansion. Due to the iterative nature of the BRAIN method, it is a requirement that the calculations start from the lightest isotope variant. As such, the complexity of BRAIN scales quadratically with the mass of the putative molecule, since it depends on the number of aggregated peaks that need to be calculated. In this manuscript, we suggest two improvements of the algorithm to decrease both time and memory complexity in obtaining the aggregated isotope distribution. We also illustrate a concept to represent the element isotope distribution in a generic manner. This representation allows for omitting the root calculation of the element polynomial required in the original BRAIN method. A generic formulation for the roots is of special interest for higher order element polynomials such that root finding algorithms and its inaccuracies can be avoided.
Language
English
Source (journal)
Journal of the American Society for Mass Spectrometry. - New York, N.Y.
Publication
New York, N.Y. : 2014
ISSN
1044-0305
Volume/pages
25:4(2014), p. 588-594
ISI
000333058100010
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 25.03.2015
Last edited 18.07.2017
To cite this reference