Publication
Title
Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response
Author
Abstract
Asymmetric dye molecules have unusual optical and electronic properties(1-3). For instance, they show a strong second-order nonlinear optical (NLO) response that has attracted great interest for potential applications in electro-optic modulators for optical telecommunications and in wavelength conversion of lasers(2,3). However, the strong Coulombic interaction between the large dipole moments of these molecules favours a pairwise antiparallel alignment that cancels out the NLO response when incorporated into bulk materials. Here, we show that by including an elongated dipolar dye (p,p'-dimethylaminonitrostilbene, DANS, a prototypical asymmetric dye with a strong NLO response(4)) inside single-walled carbon nanotubes (SWCNTs)(5,6), an ideal head-to-tail alignment in which all electric dipoles point in the same sense is naturally created. We have applied this concept to synthesize solution-processible DANS-filled SWCNTs that show an extremely large total dipole moment and static hyperpolarizability (beta(o) = 9,800 x 10(-30) e.s.u.), resulting from the coherent alignment of arrays of similar to 70 DANS molecules.
Language
English
Source (journal)
Nature nanotechnology
Publication
2015
ISSN
1748-3387
1748-3395
Volume/pages
10:3(2015), p. 248-252
ISI
000350799700016
Full text (Publishers DOI)
Full text (publishers version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 12.05.2015
Last edited 22.04.2017
To cite this reference