Publication
Title
Magnetotransport across the metal-graphene hybrid interface and its modulation by gate voltage
Author
Abstract
The graphene-metal contact is very important for optimizing the performance of graphene based electronic devices. However, it is difficult to probe the properties of the graphene/metal interface directly via transport measurements in traditional graphene lateral devices, because the dominated transport channel is graphene, not the interface. Here, we employ the Au/graphene/Au vertical and lateral hybrid structure to unveil the metal-graphene interface properties, where the transport is dominated by the charge carriers across the interface. The magnetoresistance (MR) of Au/monolayer graphene/Au and Au/stacked two-layered graphene/Au devices is measured and modulated by gate voltage, demonstrating that the interface is a device. The gate-tunable MR is identified from the graphene lying on the SiO2 substrate and underneath the top metal electrode. Our unique structures couple the in-plane and out-of-plane transport and display linear MR with small amplitude oscillations at low temperatures. Under a magnetic field, the electronic coupling between the graphene edge states and the electrode leads to the appearance of quantum oscillations. Our results not only provide a new pathway to explore the intrinsic transport mechanism at the graphene/metal interface but also open up new vistas of magnetoelectronics.
Language
English
Source (journal)
Nanoscale / Royal Society of Chemistry [London] - Cambridge, 2009, currens
Publication
Cambridge : 2015
ISSN
2040-3364 [print]
2040-3372 [online]
DOI
10.1039/C5NR00223K
Volume/pages
7 :12 (2015) , p. 5516-5524
ISI
000351372400050
Pubmed ID
25735487
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
Counting Atoms in Nanomaterials (COUNTATOMS).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 12.05.2015
Last edited 09.10.2023
To cite this reference