Publication
Title
From olivine to ringwoodite : a TEM study of a complex process
Author
Abstract
The study of shock metamorphism of olivine might help to constrain impact events in the history of meteorites. Although shock features in olivine are well known, so far, there are processes that are not yet completely understood. In shock veins, olivine clasts with a complex structure, with a ringwoodite rim and a dense network of lamellae of unidentified nature in the core, have been reported in the literature. A highly shocked (S5-6), L6 meteorite, Asuka 09584, which was recently collected in Antarctica by a Belgian-Japanese joint expedition, contains this type of shocked olivine clasts and has been, therefore, selected for detailed investigations of these features by transmission electron microscopy (TEM). Petrographic, geochemical, and crystallographic studies showed that the rim of these shocked clasts consists of an aggregate of nanocrystals of ringwoodite, with lower Mg/Fe ratio than the unshocked olivine. The clast's core consists of an aggregate of iso-oriented grains of olivine and wadsleyite, with higher Mg/Fe ratio than the unshocked olivine. This aggregate is crosscut by veinlets of nanocrystals of olivine, with extremely low Mg/Fe ratio. The formation of the ringwoodite rim is likely due to solid-state, diffusion-controlled, transformation from olivine under high-temperature conditions. The aggregate of iso-oriented olivine and wadsleyite crystals is interpreted to have formed also by a solid-state process, likely by coherent intracrystalline nucleation. Following the compression, shock release is believed to have caused opening of cracks and fractures in olivine and formation of olivine melt, which has lately crystallized under postshock equilibrium pressure conditions as olivine.
Language
English
Source (journal)
Meteoritics and Planetary Science
Publication
2015
ISSN
1086-9379
DOI
10.1111/MAPS.12441
Volume/pages
50 :5 (2015) , p. 944-957
ISI
000354258400008
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Internal investigation of zeolite crystals and their guests.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 11.06.2015
Last edited 09.10.2023
To cite this reference