Publication
Title
Mechanical switching of nanoscale multiferroic phase boundaries
Author
Abstract
Tuning the lattice degree of freedom in nanoscale functional crystals is critical to exploit the emerging functionalities such as piezoelectricity, shape-memory effect, or piezomagnetism, which are attributed to the intrinsic lattice-polar or lattice-spin coupling. Here it is reported that a mechanical probe can be a dynamic tool to switch the ferroic orders at the nanoscale multiferroic phase boundaries in BiFeO3 with a phase mixture, where the material can be reversibly transformed between the soft tetragonal-like and the hard rhombohedral-like structures. The microscopic origin of the nonvolatile mechanical switching of the multiferroic phase boundaries, coupled with a reversible 180 degrees rotation of the in-plane ferroelectric polarization, is the nanoscale pressure-induced elastic deformation and reconstruction of the spontaneous strain gradient across the multiferroic phase boundaries. The reversible control of the room-temperature multiple ferroic orders using a pure mechanical stimulus may bring us a new pathway to achieve the potential energy conversion and sensing applications.
Language
English
Source (journal)
Advanced functional materials. - Weinheim
Publication
Weinheim : 2015
ISSN
1616-301X
DOI
10.1002/ADFM.201500600
Volume/pages
25 :22 (2015) , p. 3405-3413
ISI
000355992600017
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 02.07.2015
Last edited 04.03.2024
To cite this reference