Title
Adaptive grid refinement for discrete tomography
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
conferenceObject
Publication
Cham :Springer int publishing ag ,
Subject
Physics
Engineering sciences. Technology
Computer. Automation
Source (journal)
Lecture notes in computer science. - Berlin, 1973, currens
Source (book)
18th IAPR International Conference on Discrete Geometry for Computer, Imagery (DGCI), SEP 10-12, 2014, Univ Siena, Dipartimento Ingn Informazione & Scienze Matematiche, Siena, ITALY
Volume/pages
8668(2014) , p. 297-308
ISSN
0302-9743
ISBN
978-3-319-09955-2
ISI
000358195100025
ISBN
978-3-319-09954-5
Carrier
E
Target language
English (eng)
Affiliation
University of Antwerp
Abstract
Discrete tomography has proven itself as a powerful approach to image reconstruction from limited data. In recent years, algebraic reconstruction methods have been applied successfully to a range of experimental data sets. However, the computational cost of such reconstruction techniques currently prevents routine application to large data-sets. In this paper we investigate the use of adaptive refinement on QuadTree grids to reduce the number of pixels (or voxels) needed to represent an image. Such locally refined grids match well with the domain of discrete tomography as they are optimally suited for representing images containing large homogeneous regions. Reducing the number of pixels ultimately promises a reduction in both the computation time of discrete algebraic reconstruction techniques as well as reduced memory requirements. At the same time, a reduction of the number of unknowns can reduce the influence of noise on the reconstruction. The resulting refined grid can be used directly for further post-processing (such as segmentation, feature extraction or metrology). The proposed approach can also be used in a non-adaptive manner for region-of-interest tomography. We present a computational approach for automatic determination of the locations where the grid must be defined. We demonstrate how algebraic discrete tomography algorithms can be constructed based on the QuadTree data structure, resulting in reconstruction methods that are fast, accurate and memory efficient.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000358195100025&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000358195100025&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle