Publication
Title
Development and validation of an in vitro experimental gastroIntestinal dialysis model with colon phase to study the availability and colonic metabolisation of polyphenolic compounds
Author
Abstract
The biological effects of polyphenols depend on their mechanism of action in the body. This is affected by bioconversion by colon microbiota and absorption of colonic metabolites. We developed and validated an in vitro continuous flow dialysis model with colon phase (GastroIntestinal dialysis model with colon phase) to study the gastrointestinal metabolism and absorption of phenolic food constituents. Chlorogenic acid was used as model compound. The physiological conditions during gastrointestinal digestion were mimicked. A continuous flow dialysis system simulated the one-way absorption by passive diffusion from lumen to mucosa. The colon phase was developed using pooled faecal suspensions. Several methodological aspects including implementation of an anaerobic environment, adapted Wilkins Chalgren broth medium, 1.108 CFU/mL bacteria suspension as inoculum, pH adaptation to 5.8 and implementation of the dialysis system were conducted. Validation of the GastroIntestinal dialysis model with colon phase system showed a good recovery and precision (CV < 16 %). Availability of chlorogenic acid in the small intestinal phase (37 ± 3 %) of the GastroIntestinal dialysis model with colon phase is comparable with in vivo studies on ileostomy patients. In the colon phase, the human faecal microbiota deconjugated chlorogenic acid to caffeic acid, 3,4-dihydroxyphenyl propionic acid, 4-hydroxybenzoic acid, 3- or 4-hydroxyphenyl acetic acid, 2-methoxy-4-methylphenol and 3-phenylpropionic acid. The GastroIntestinal dialysis model with colon phase is a new, reliable gastrointestinal simulation system. It permits a fast and easy way to predict the availability of complex secondary metabolites, and to detect metabolites in an early stage after digestion. Isolation and identification of these metabolites may be used as references for in vivo bioavailability experiments and for investigating their bioactivity in in vitro experiments.
Language
English
Source (journal)
Planta medica: natural products and medicinal plant research. - Stuttgart
Publication
Stuttgart : 2015
ISSN
0032-0943
DOI
10.1055/S-0035-1546154
Volume/pages
81 :12-13 (2015) , p. 1075-1083
ISI
000360095600013
Pubmed ID
26166134
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Development of an integrated strategy to characterize new lead compounds based on natural pro-drugs and their metabolites.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 22.09.2015
Last edited 04.03.2024
To cite this reference