Title
Native defects and the dehydrogenation of <tex>$NaBH_{4}$</tex> Native defects and the dehydrogenation of <tex>$NaBH_{4}$</tex>
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Washington, D.C. ,
Subject
Physics
Chemistry
Engineering sciences. Technology
Source (journal)
The journal of physical chemistry : C : nanomaterials and interfaces. - Washington, D.C., 2007, currens
Volume/pages
115(2011) :49 , p. 24429-24434
ISSN
1932-7447
ISI
000297609000048
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
Chemical reactions of hydrogen storage materials often involve mass transport through a bulk solid. Diffusion in crystalline solids proceeds by means of lattice defects. Using density functional theory (DFT) calculations, we identify the stability and the mobility of the most prominent lattice defects in the hydrogen storage material NaBH4. At experimental dehydrogenation conditions, the Schottky defects of missing Na+ and BH4- ions form the main vehicle for mass transport in NaBH4. Substituting a BH4- by a H- ion yields the most stable defect, locally converting NaBH4 into NaH. Such a substitution most likely occurs at the surface of NaBH4, releasing BH3. Adding Mg or MgH2 to NaBH4 promotes this scenario.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000297609000048&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000297609000048&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000297609000048&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848