Publication
Title
The effect of Gibbs ringing artifacts on measures derived from diffusion MRI
Author
Abstract
Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a unique method to investigate microstructural tissue properties noninvasively and is one of the most popular methods for studying the brain white matter in vivo. To obtain reliable statistical inferences with diffusion MRI, however, there are still many challenges, such as acquiring high-quality DW-MRI data (e.g., high SNR and high resolution), careful data preprocessing (e.g., correcting for subject motion and eddy current induced geometric distortions), choosing the appropriate diffusion approach (e.g., diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), or diffusion spectrum MRI), and applying a robust analysis strategy (e.g., tractography based or voxel based analysis). Notwithstanding the numerous efforts to optimize many steps in this complex and lengthy diffusion analysis pipeline, to date, a well-known artifact in MRI -i.e., Gibbs ringing (GR)-has largely gone unnoticed or deemed insignificant as a potential confound in quantitative DW-MRI analysis. Considering the recent explosion of diffusion MRI applications in biomedical and clinical applications, a systematic and comprehensive investigation is necessary to understand the influence of GR on the estimation of diffusion measures. In this work, we demonstrate with simulations and experimental DW-MRI data that diffusion estimates are significantly affected by GR artifacts and we show that an off-the-shelf GR correction procedure based on total variation already can alleviate this issue substantially. (C) 2015 Elsevier Inc. All rights reserved.
Language
English
Source (journal)
Neuroimage. - New York
Publication
New York : 2015
ISSN
1053-8119
DOI
10.1016/J.NEUROIMAGE.2015.06.068
Volume/pages
120 (2015) , p. 441-455
ISI
000362025000039
Pubmed ID
26142273
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Integrated cerebral networks for perception, cognition and action in human and non-human primates (CEREBNET).
Quantitative extraction of normaal values from (diffusion weighted) MR images of the premature brain.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 13.11.2015
Last edited 09.10.2023
To cite this reference