Title
<tex>$Fe_{2}O_{3}-TiO_{2}$</tex> nano-heterostructure photoanodes for highly efficient solar water oxidation <tex>$Fe_{2}O_{3}-TiO_{2}$</tex> nano-heterostructure photoanodes for highly efficient solar water oxidation
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Subject
Physics
Chemistry
Source (journal)
Advanced materials interfaces
Volume/pages
2(2015) :17 , 11 p.
ISSN
2196-7350
Article Reference
1500313
ISI
000368914700011
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000368914700011&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000368914700011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000368914700011&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle