Title
Surface-facet-dependent phonon deformation potential in individual strained topological insulator <tex>$Bi_{2}Se_{3}$</tex> nanoribbons Surface-facet-dependent phonon deformation potential in individual strained topological insulator <tex>$Bi_{2}Se_{3}$</tex> nanoribbons
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Subject
Physics
Chemistry
Engineering sciences. Technology
Source (journal)
ACS nano
Volume/pages
9(2015) :10 , p. 10244-10251
ISSN
1936-0851
ISI
000363915300079
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the &#10216;112&#773;0&#10217; direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the &#10216;112&#773;0&#10217; direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/873de1/129216_2016_12_01.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363915300079&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363915300079&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363915300079&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle