Publication
Title
Surface-facet-dependent phonon deformation potential in individual strained topological insulator nanoribbons
Author
Abstract
Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.
Language
English
Source (journal)
ACS nano. - -
Publication
2015
ISSN
1936-0851
DOI
10.1021/ACSNANO.5B04057
Volume/pages
9 :10 (2015) , p. 10244-10251
ISI
000363915300079
Pubmed ID
26365014
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 01.12.2015
Last edited 09.10.2023
To cite this reference