Title
The pMSSM10 after LHC run 1 The pMSSM10 after LHC run 1
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Berlin ,
Subject
Physics
Source (journal)
European physical journal : C : particles and fields. - Berlin
Volume/pages
75(2015) :9 , 34 p.
ISSN
1434-6044
1434-6044
Article Reference
422
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
We present a frequentist analysis of the parameter space of the pMSSM10, in which the following ten soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale M-SUSY equivalent to root m((t) over tilde1)m((t) over tilde2) : the gaugino masses M-1,M-2,M-3, the first-and second-generation squark masses m((q) over tilde1) = m((q) over tilde2), the third-generation squark mass m((q) over tilde3), a common slepton mass m((l) over tilde) and a common trilinear mixing parameter A, as well as the Higgs mixing parameter mu, the pseudoscalar Higgs mass M-A and tan beta, the ratio of the two Higgs vacuum expectation values. We use the MultiNest sampling algorithm with similar to 1.2 x10(9) points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly interacting sparticle masses of ATLAS and CMS searches for jets, leptons + E-T signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for electroweakly interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements of BR(B-s -> mu(+)mu(-)) by LHCb and CMS, other B-physics observables, electroweak precision observables, the cold dark matter density and the XENON100 and LUX searches for spin-independent dark matter scattering, assuming that the cold dark matter is mainly provided by the lightest neutralino (chi) over tilde (0)(1). We show that the pMSSM10 is able to provide a supersymmetric interpretation of (g - 2)(mu), unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi(2) = 20.5 with 18 degrees of freedom (d. o. f.) in the pMSSM10, corresponding to a chi(2) probability of 30.8 %, to be compared with chi(2)/d.o.f. = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1) (NUHM2). We display the one-dimensional likelihood functions for sparticle masses, and we show that they may be significantly lighter in the pMSSM10 than in the other models, e. g., the gluino may be as light as similar to 1250 GeV at the 68 % CL, and squarks, stops, electroweak gauginos and sleptons may be much lighter than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e(+)e(-) colliders and direct detection experiments.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363331300002&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363331300002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Full text (open access)
https://repository.uantwerpen.be/docman/irua/a5b41b/129466.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363331300002&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle