Title
Efficient cluster detection by ordered neighborhoods Efficient cluster detection by ordered neighborhoods
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
conferenceObject
Publication
Berlin :Springer-verlag berlin ,
Subject
Computer. Automation
Source (journal)
BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY
Source (book)
17th International Conference on Big Data Analytics and Knowledge, Discovery (DaWaK), SEP 01-04, 2015, Valencia, SPAIN
Volume/pages
9263(2015) , p. 15-27
ISSN
0302-9743
ISBN
978-3-319-22729-0
ISI
000363583200002
ISBN
978-3-319-22728-3
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Detecting cluster structures seems to be a simple task, i.e. separating similar from dissimilar objects. However, given today's complex data, (dis-)similarity measures and traditional clustering algorithms are not reliable in separating clusters from each other. For example, when too many dimensions are considered simultaneously, objects become unique and (dis-) similarity does not provide meaningful information to detect clusters anymore. While the (dis-) similarity measures might be meaningful for individual dimensions, algorithms fail to combine this information for cluster detection. In particular, it is the severe issue of a combinatorial search space that results in inefficient algorithms. In this paper we propose a cluster detection method based on the ordered neighborhoods. By considering such ordered neighborhoods in each dimension individually, we derive properties that allow us to detect clustered objects in dimensions in linear time. Our algorithm exploits the ordered neighborhoods in order to find both the similar objects and the dimensions in which these objects show high similarity. Evaluation results show that our method is scalable with both database size and dimensionality and enhances cluster detection w.r.t. state-of-the-art clustering techniques.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363583200002&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000363583200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle