Title
Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves
Author
Faculty/Department
Faculty of Sciences. Biology
Publication type
article
Publication
Berlin ,
Subject
Biology
Source (journal)
Trees: structure and function. - Berlin
Volume/pages
29(2015) :6 , p. 1805-1816
ISSN
0931-1890
ISI
000365711700015
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Foliage isoprenoid content or essential oil content is a key plant characteristic important in plant science, but also for food, cosmetic and pharmaceutical industry. Commonly, the amount of foliage chemicals is normalized with respect to leaf dry mass (content per dry mass). However, the protocols for foliage drying have received little attention. In particular, volatile and semi-volatile isoprenoids and other compounds with low boiling point may partly volatilize during drying, reducing both isoprenoid and leaf dry matter contents, thereby potentially underestimating the content of volatiles and overestimating that of non-volatile constituents. Three leaf preservation (flash freezing in liquid nitrogen, freezing at −82 and at −20 °C, and cooling at 4 °C) and two leaf desiccation (freeze-drying at −54 °C and 1.2 mbar, and air-drying at 30, 40 60, 70, 80, 100, 110, 125, 150, 200, and 300 °C) procedures were applied to replicate leaves, and the leaf dry matter content as well as the leaf isoprenoid content was measured afterwards. The results of this experiment suggested that freeze-drying method (FD) performed the best leaf isoprenoid preservation followed by FF method, whilst air-drying methods performed a dramatic isoprenoid loss in the leaf samples, as well as preserving the leaves at freezing and cooling temperatures. Leaf isoprenoid content and leaf dry to fresh mass ratio were correlated and there were evidences of leaf dry matter content (LDMC) miscalculation in isoprenoid-storing species when using traditional air-drying methods and preservation of samples, possibly related to the isoprenoid loss as well as other volatile compounds. In addition, losses of high C content volatiles and respiration of sugars and carbohydrate pyrolysis with low carbon content may differently affect the bulk leaf C content.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/bcacb0/129584.pdf
E-info
https://repository.uantwerpen.be/docman/iruaauth/2b5faa/129584.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000365711700015&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000365711700015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000365711700015&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle