Publication
Title
Linearized topologies and deformation theory
Author
Abstract
In this paper, for an underlying small category U endowed with a Grothendieck topology tau, and a linear category a which is graded over U in the sense of [13], we define a natural linear topology T-tau on a, which we call the linearized topology. Grothendieck categories in (non-commutative) algebraic geometry can often be realized as linear sheaf categories over linearized topologies. With the eye on deformation theory, it is important to obtain such realizations in which the linear category contains a restricted amount of algebraic information. We prove several results on the relation between refinement (eliminating both objects, and, more surprisingly, morphisms) of the non-linear underlying site (U, tau), and refinement of the linearized site (a, T-tau). These results apply to several incarnations of (quasi-coherent) sheaf categories, leading to a description of the infinitesimal deformation theory of these categories in the sense of [17] which is entirely controlled by the Gerstenhaber deformation theory of the small linear category a, and the Grothendieck topology tau on U. Our findings extend results from [17,12,7] and recover the examples from [21,20]. (C) 2015 Elsevier B.V. All rights reserved.
Language
English
Source (journal)
Topology and its applications. - Amsterdam
Publication
Amsterdam : 2016
ISSN
0166-8641
Volume/pages
200(2016), p. 176-211
ISI
000370897400012
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
[E?say:metaLocaldata.cgzprojectinf]
HHNcdMir - Hochschild cohomology, non-commutative deformations and mirror symmetry.
Algebraic deformation techniques in geometric contexts.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 19.12.2015
Last edited 13.08.2017
To cite this reference