Linearized topologies and deformation theory
Linearized topologies and deformation theory
Faculty of Sciences. Mathematics and Computer Science

article

2016
Amsterdam
, 2016

Mathematics

Topology and its applications. - Amsterdam

200(2016)
, p. 176-211

0166-8641

000370897400012

E

English (eng)

University of Antwerp

In this paper, for an underlying small category U endowed with a Grothendieck topology tau, and a linear category a which is graded over U in the sense of [13], we define a natural linear topology T-tau on a, which we call the linearized topology. Grothendieck categories in (non-commutative) algebraic geometry can often be realized as linear sheaf categories over linearized topologies. With the eye on deformation theory, it is important to obtain such realizations in which the linear category contains a restricted amount of algebraic information. We prove several results on the relation between refinement (eliminating both objects, and, more surprisingly, morphisms) of the non-linear underlying site (U, tau), and refinement of the linearized site (a, T-tau). These results apply to several incarnations of (quasi-coherent) sheaf categories, leading to a description of the infinitesimal deformation theory of these categories in the sense of [17] which is entirely controlled by the Gerstenhaber deformation theory of the small linear category a, and the Grothendieck topology tau on U. Our findings extend results from [17,12,7] and recover the examples from [21,20]. (C) 2015 Elsevier B.V. All rights reserved.

https://repository.uantwerpen.be/docman/irua/9c13f4/129685.pdf

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000370897400012&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000370897400012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848