Title
Unraveling the reactivity of minium towards bicarbonate and the role of lead oxides therein Unraveling the reactivity of minium towards bicarbonate and the role of lead oxides therein
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Washington, D.C. ,
Subject
Chemistry
Source (journal)
Analytical chemistry. - Washington, D.C.
Volume/pages
88(2016) :3 , p. 1564-1569
ISSN
0003-2700
ISI
000369471100014
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Understanding the reactivity of (semiconductor) pigments provides vital information on how to improve conservation strategies for works of art in order to avoid rapid degradation of the pigments. This study focuses on the photoactivity of minium (Pb3O4), a semiconductor pigment, that gives rise to strong discoloration phenomena upon exposure to various environmental conditions. To demonstrate its photoactivity, an electrochemical setup with minium-modified graphite electrode (C|Pb3O4) was used. It is confirmed that minium is a p-type semiconductor which is photoactive during illumination and becomes inactive in the dark. Raman measurements confirm the formation of the degradation products. The photoactivity of a semiconductor pigment is partly defined by the presence of lead oxide (PbO) impurities; these introduce new states in the original band gap. It will be experi-mentally evidenced that the presence of PbO particles in minium leads to an upward shift of the valence band that reduces the band gap. Thus, upon photoexcitation, the electron/hole separation is more easily initialized. The PbO/Pb3O4 composite electrodes demonstrate a higher reductive photocurrent compared to the photocurrent registered at pure PbO or Pb3O4 modified electrodes. Upon exposure to light with energy close to and above the band gap, electrons are excited from the valence band to the conduction band to initialize the reduction of Pb(IV) to Pb(II), resulting in the initial formation of PbO. However in the presence of bicarbonate ions, a significantly higher photoreduction current is recorded since the PbO reacts further to form hydrocerussite. Therefore the presence of bicarbonates in the environment stimulates the photodecomposition process of minium and plays an important role in the degradation process.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000369471100014&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000369471100014&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle