Publication
Title
Affinity is an important determinant of the anti-trypanosome activity of nanobodies
Author
Abstract
Background: The discovery of Nanobodies (Nbs) with a direct toxic activity against African trypanosomes is a recent advancement towards a new strategy against these extracellular parasites. The anti-trypanosomal activity relies on perturbing the highly active recycling of the Variant-specific Surface Glycoprotein (VSG) that occurs in the parasite's flagellar pocket. Methodology/Principal Findings: Here we expand the existing panel of Nbs with anti-Trypanosoma brucei potential and identify four categories based on their epitope specificity. We modified the binding properties of previously identified Nanobodies Nb_An05 and Nb_An33 by site-directed mutagenesis in the paratope and found this to strongly affect trypanotoxicity despite retention of antigen-targeting properties. Affinity measurements for all identified anti-trypanosomal Nbs reveal a strong correlation between trypanotoxicity and affinity (KD), suggesting that it is a crucial determinant for this activity. Half maximal effective (50%) affinity of 57 nM was calculated from the non-linear dose-response curves. In line with these observations, Nb humanizing mutations only preserved the trypanotoxic activity if the KD remained unaffected. Conclusions/Significance: This study reveals that the binding properties of Nanobodies need to be compatible with achieving an occupancy of >95% saturation of the parasite surface VSG in order to exert an anti-trypanosomal activity. As such, Nb-based approaches directed against the VSG target would require binding to an accessible, conserved epitope with high affinity.
Language
English
Source (journal)
PLoS neglected tropical diseases
Publication
2012
ISSN
1935-2727
1935-2735
DOI
10.1371/JOURNAL.PNTD.0001902
Volume/pages
6 :11 (2012) , 8 p.
Article Reference
e1902
ISI
000311888900030
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 13.01.2016
Last edited 04.02.2023
To cite this reference